(5x^2+24x+19)/2=6456

Simple and best practice solution for (5x^2+24x+19)/2=6456 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2+24x+19)/2=6456 equation:



(5x^2+24x+19)/2=6456
We move all terms to the left:
(5x^2+24x+19)/2-(6456)=0
We multiply all the terms by the denominator
(5x^2+24x+19)-6456*2=0
We add all the numbers together, and all the variables
(5x^2+24x+19)-12912=0
We get rid of parentheses
5x^2+24x+19-12912=0
We add all the numbers together, and all the variables
5x^2+24x-12893=0
a = 5; b = 24; c = -12893;
Δ = b2-4ac
Δ = 242-4·5·(-12893)
Δ = 258436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{258436}=\sqrt{4*64609}=\sqrt{4}*\sqrt{64609}=2\sqrt{64609}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{64609}}{2*5}=\frac{-24-2\sqrt{64609}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{64609}}{2*5}=\frac{-24+2\sqrt{64609}}{10} $

See similar equations:

| 5(2x+0.4)+6(x-1.5)=0 | | 7(2x-3.9)=4(3x+1.3) | | (5n^2+24n+19)/2=6456 | | X²+(x+1)²=85 | | 3y⁴-3y²+3y+60=0 | | X²+5x+6=20 | | _1.3x+5.2=0 | | 11+22x=0 | | (x2+3x+-5)+(-3x2+-8x+9)=0 | | x*0.15=90 | | 9-4b=15 | | 8x²+4x-8=0 | | 2x=x+20=2x+10 | | 13-11b²=0 | | 11b+2=0 | | 2b-11=0 | | −8−x=−3(2x−4)+3x-8-x=-3(2x-4)+3x | | 96+2w=2(80−3w) | | 7x-(2-x)=9-(2x+1) | | 7x-(2-x)=9-2x+1 | | 6b-10=0 | | 10b+6=0 | | 8-9a2=0 | | 8-18a=0 | | 8−9a²=0 | | 8−9a2=0 | | 20x+30x=X | | 4h+36=–20 | | y+14=11 | | 4-2z/3=(3/4-5/6)=0 | | z+12=10 | | X+3(x-4)=2x-1 |

Equations solver categories